$$f \frac{d^2y}{dx^2} + g \frac{dy}{dx} + h y = RHS$$

1 Constant Coefficients

Homogeneous RHS = 0

1. $y_c = e^{mx}$

- 2. Plug y_c (and its derivatives) into the equation.
- 3. Factor/divide out e^{mx} .
- 4. Solve for m.

5. $y = y_c$

Nice $RHS = x^n, e^{ax}, \sin bx, \cos bx$

- 1. Find y_c .
- 2. Form the monster equation by applying the annihilator to both sides of the equation.

 $e^{ax} \to (D-a)$ $\sin bx, \cos bx \to (D^2 + b^2)$ $e^{ax} \sin bx, e^{ax} \cos bx \to ((D-a)^2 + b^2)$ $x^n f(x) \to A^{n+1}$

- 3. Solve the monster equation (it is homogeneous) for y_m .
- 4. $y_p =$ all the terms from y_m that do not appear in y_c .
- 5. Plug y_p into the original equation and solve for A, B, \ldots
- 6. $y = y_c + y_p$

Not-so-Nice Variation of parameters.

- 1. Find $y_c = c_1 v_1 + c_2 v_2$.
- 2. $y_p = u_1 v_1 + u_2 v_2$
- 3. Plug y_p (and its derivatives) into the equation:

$$u_1'y_1 + u_2'y_2 = 0$$

$$u_1'y_1' + u_2'y_2' = RHS$$

- 4. Solve for v_1 and v_2 .
- 5. Rewrite $y = y_c + y_p$

Anything LaPlace transforms.

- 1. Apply the LaPlace transform to both sides of the equation. Note the table of transforms at the end of the book.
- 2. Solve for Y(s). Note: some books use F(s).
- 3. Decompose the right-hand-side into partial fractions.
- 4. Apply the inverse LaPlace transform to both sides of the equation.

2 Reduction of Order

Given one solution, $y_1 \ldots$

- 1. Let $y = u y_1$
- 2. Plug y (and its derivatives) into the equation.
- 3. All terms involving u (with no derivative) should cancel.

4. Let
$$v = \frac{du}{dx}$$

- 5. Solve the (first order) equation for v.
- 6. Integrate to solve for u.
- 7. Rewrite $y = u y_1$

3 Variable Coefficients

Cauchy-Euler $ax^2 \frac{d^2y}{dx^2} + bx \frac{dy}{dx} + c y = 0$ (degree matches derivative)

- 1. Let $y = x^{\alpha}$.
- 2. Plug u (and its derivatives) into the equation.
- 3. Divide by x^{α} .
- 4. Solve for α .
- 5. Rewrite $y = cx^{\alpha}$.

Regular Point The leading coefficient is not zero.

1.
$$y = \sum_{n=0}^{\infty} a_n x^n$$

2. Plug y (and its derivatives) into the equation.

- 3. Reindex the sums as necessary to combine into a single sum.
- 4. Form a recurrence relation, and solve for the highest index of a.
- 5. Solve the recurrence relation for a_n .

6. Rewrite
$$y = \sum_{n=0}^{\infty} a_n x^n$$

Singular Point The leading coefficient may be zero.

1.
$$y = \sum_{n=0}^{\infty} a_n x^{n+r}$$

- 2. Plug y (and its derivatives) into the equation.
- 3. Reindex the sums as necessary to combine into a single sum.
- 4. Solve the indicial polynomial for r.
- 5. Form a recurrence relation, and solve for the highest index of a.
- 6. Solve the recurrence relation for a_n .

7. Rewrite
$$y = \sum_{n=0}^{\infty} a_n x^{n+2}$$