$$\begin{bmatrix} S \longleftarrow H \\ L \longleftarrow B \\ E \longleftarrow NE \end{bmatrix}$$

- 1. Separable $\frac{dy}{dx} = f(x)g(y)$
 - (a) Move all x's to one side of the equation and all y's to the other.
 - (b) Integrate.
- 2. Linear $\frac{dy}{dx} + P(x)y = Q(x)$
 - (a) Identify the integrating factor: $e^{\int P(x)dx}$.
 - (b) Multiply both sides of the equation by the integrating factor.
 - (c) Reverse product rule.
 - (d) Integrate.
 - (e) Solve for y.

3. Exact M(x,y)dx + N(x,y)dy = 0, where $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$

- (a) Identify $f_1(x, y) = \int M(x, y) dx$ (think "partial integral")
- (b) Identify $f_2(x, y) = \int N(x, y) \, dy$ ("partial integral")
- (c) Reconcile $f(x, y) = f_1(x, y) = f_2(x, y)$.
- (d) Write out your solution f(x, y) = c.
- 4. Homogeneous M(x,y)dx + N(x,y)dy = 0, where M and N are homogeneous of degree α .
 - (a) Choose one:
 - i. $u = \frac{x}{y}$, if M is simpler.
 - ii. $u = \frac{y}{r}$, if N is simpler.
 - (b) Calculate du and rewrite the equation in terms of u and x.
 - (c) The equation is now separable. See method 1, above.
- 5. Bernoulli $\frac{dy}{dx} + P(x)y = Q(x)y^n$
 - (a) Let $v = y^{1-n}$.
 - (b) Compute dv.
 - (c) Rewrite the equation in terms of v and x.
 - (d) The equation is now linear. See method 2, above.
- 6. Near-Exact M(x, y)dx + N(x, y)dy = 0
 - (a) Try one (if the first fails, try the second):
 - i. If $\frac{M_y N_x}{N}$ is a function of x, let $\mu = e^{\int \frac{M_y N_x}{N} dx}$ ii. If $\frac{N_x - M_y}{M}$ is a function of y, let $\mu = e^{\int \frac{N_x - M_y}{M} dy}$
 - (b) Multiply both sides of the equation by μ .
 - (c) The equation is now exact. See mthod 3, above.
- 7. **u-Substitution** $\frac{dy}{dx} = f(Ax + By + C)$
 - (a) Let u = Ax + By + C.
 - (b) Calculate du.
 - (c) Rewrite the equation in terms of x and u.
 - (d) Reexamine which of the other methods applies to the new equation.