Math 180 Review

updated July 3, 2013

Determine whether or not each function is continuous at the given point.

25. $g_1(x) = \frac{x^2 - 1}{x - 1}$ at x = 126. $g_2(x) = \begin{cases} 2x - 3, & x < 3 \\ 3x - 2, & x \ge 3 \end{cases}$ at x = 327. $g_3(x) = \begin{cases} x^2 - 1, & x \ne 2 \\ 4, & x = 2 \end{cases}$ at x = 228. $g_4(x) = \frac{x + 2}{x - 1}$ at x = 4

Find any points of discontinuity and determine if each is removeable.

29.
$$f_1(x) = \frac{\sin 2x}{x}$$

30. $f_2(x) = \begin{cases} x^2 + 1, & x \le 2\\ 2x - 1, & x > 2 \end{cases}$ 31. $f_3(x) = \frac{x}{x^2 + 4}$

Determine whether or not the function has a zero in the indicated interval.

32.
$$f(x) = x^3 - 5x + 2$$
 on $[0, 1]$
33. $g(x) = x^3 + x - 3$ on $[0, 1]$
34. $h(x)x^3 - x^2 - 2x + 1$ on $[0, 2]$

Given ϵ , find a δ so that the definition of limit is satisfied.

35.
$$\lim_{x \to 2} 3x - 1 = 5, \ \epsilon = 0.1$$

36. $\lim_{x \to 1} 2 - 3x = -1, \ \epsilon = 0.01$
37. $\lim_{x \to 2} x^2 = 4, \ \epsilon = 0.03$

Prove the given limit.

38. $\lim_{x \to -2} 2x + 5 = 1$

39.
$$\lim_{x \to 1} 4 - 2x = 2$$

40. $\lim_{x \to 3} x^2 = 1$

9

Compute each derivative.

41. $x^2 \sin 3x$	51. $\arctan e^{x^2}$	61. $\log_2(\log_7 x^2)$
42. $\frac{\arctan 2x}{x^3}$	52. $\cos(x \arcsin x)$	62. $\log_3(e^{\log_7 x})$
43. $\ln(x^2 - 1)$	53. $x \cos(x2^x)$	63. $\sin\left(\ln\left(\cos\left(e^{7x}\right)\right)\right)$
44. $\sqrt{x}e^{-3x}$	54. $\arcsin \frac{\cos x}{\ln x}$	64. $\sqrt{2x-3}\sqrt[3]{3x-2}(x-1)^7$
45. $\frac{\cos x}{\arcsin x}$	55. $\frac{\arctan x}{e^{\sin x}}$	65. $\sqrt{\frac{x^2+1}{x-4}} \sqrt[3]{\frac{x-2}{x^2+4}}$
46. $\tan(\ln x)$	56. $\frac{x \tan x}{\ln x}$	66. $2^{3x} \cdot 3^{4x}$
47. $\cos(x)e^{-2x}$	57. $x \ln(x) e^x$	67. 2^{3^x}
48. $\frac{\arcsin x}{\ln x}$	58. $\tan(\ln(x)e^x)$	68. x^x
49. $\arctan e^{4x}$	59. $\arcsin\frac{\ln x}{x}$	69. $(\sin x)^x$
50. $\ln(x)e^{5x}$	60. $\ln(\cos(e^x))$	70. u^v , for general functions u and v .

Find the derivative by applying the limit definition.

71. $h_1(x) = x^3 - 7x + 2$ 72. $h_2(x) = \sqrt{x+3}$ 73. $h_3(x) = \frac{1}{x-2}$ 74. $h_4(x) = \frac{1}{\sqrt{x}}$

Find the derivative at the indicated point by applying the alternate definition.

75. $\phi_1(x) = x^3 - 1$ at (2,7) 76. $\phi_2(x) = \sqrt{x-1}$ at (5,2) 77. $\phi_3(x) = \frac{1}{x+2}$ at (-1,1) 78. $\phi_4(x) = \frac{1}{\sqrt{x}}$ at (1,1)

Find the absolute extrema on the given interval.

79. $x^3 - 12x + 2$ on [-3,3] 80. $x^3 - 3x^2 + 4x$ on [1,3] 81. $x - 2\sqrt[3]{x^2}$ on [-1,5]

Use the calculus-informed curve sketching techniques to graph the following.

- 82. $f(x) = x^3 3x^2 9x + 27$ 83. $g(x) = \frac{x}{x^2 - 1}$ 84. $h(x) = (x - 1)^2 (x - 3)^3$
- 85. For each function, determine if Rolle's theorem applies on [-2, 2] and if so, find the value of c guaranteed by Rolle's theorem.
 - (a) $f(x) = \frac{1}{x^2}$ (b) $g(x) = x^2 - x + 1$ (c) $h(x) = x^2 - 3$
- 86. For each function, determine if the mean value theorem applies on [-2, 2] and if so, find the value of c guaranteed by the mean value theorem.
 - (a) $f(x) = \frac{1}{x-1}$

(b)
$$g(x) = x^2 - x + 1$$

(c)
$$h(x) = x - \sqrt[3]{x}$$

- 87. Find the equation of the tangent line to $y = \sqrt{x-2}$ at x = 6.
- 88. Find the equation of the normal line to $y = \frac{1}{x^2}$ at x = -2.
- 89. A stone is thrown upward with an initial velocity of 11 ft/s from the roof of a building 27 ft high. Find...

- (a) The maximum height the stone reaches.
- (b) The time it takes for the stone to hit the ground.
- (c) The velocity and speed of the stone when it hits the ground.
- (d) The average velocity from t = 0 to t = 1.
- 90. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$, where $xy = x^2 y^2$.
- 91. At 3:25, a car begins travelling north at 60 mph. Fifteen minutes later, a second car leaves the same spot, travelling east at 75 mph. At 4:00, find the rate at which the distance between the two cars is increasing.
- 92. A spherical balloon is being filled at 12 cc/s. Find its rate of change in surface area when its volume is 60 cc.
- 93. A rocket is fired from ground level with an acceleration of 6 ft/ s^2 , 50 ft from an observer on ground level. Find the rate at which the observer's angle of elevation is changing when the rocket is 75 ft from the ground.
- 94. 16 cm of wire is to be cut into two pieces. The first piece will be bent into the shape of a square, while the second will be bent to form an equilateral triangle. How should the wire be cut so that the enclosed area is maximum?
- 95. $24 in^2$ of material is available to construct a square-bottomed box. Find the dimensions of the box that maximize its volume.
- 96. Find the point on the graph of $y = \sqrt{x}$ that is closest to (0, 4).
- 97. A can is to hold $350cm^3$. The material for the side of the can costs \$0.02 per cm^2 , that of the bottom costs \$0.03 per cm^2 , while the top costs \$0.04 per cm^2 . Find the dimensions of the can that minimize the cost.
- 98. A movie screen is 30 ft high, and raised 8 ft off the floor. How far from the screen should you sit to maximize your viewing angle?
- 99. Use differentials to estimate $\sqrt{99}$.
- 100. A cube is measured to be $12.1 \pm 0.05 cm$ on a side. Estimate the percent error in volume of this measurement.
- 101. Given the graphs labeled A, B and C, identify which is f(x), f'(x), f''(x).

Evaluate each integral.

- 120. Find the area bounded by $y = 3x^2 + 6x + 11$ on the interval [0, 2].
- 121. Use a Riemann sum to find the area of the region bounded by $y = 4x x^2$ and y = 0.
- 122. Suppose f'''(x) = 12x 6, f''(1) = -3, f'(2) = 1 and f(0) = 3. Find f(x).
- 123. Gravity on the moon's surface is 5.33 ft/ s^2 . Derive a formula for the motion of a rock dropped from a height of 4 ft.
- 124. Find the average value of $x^2 2x + 4$ on [0,3], and find the value of c guaranteed by the mean value theorem.

125. Compute $\frac{df}{dx}$, where $f(x) = \int_{x^2}^{7} \sin e^t dt$.