MATH 150 Final Exam Review

Simplify: 1.

a)
$$\frac{(-3) + (-2)(-10)}{-(2)(6) - 5}$$
 b) $4y - 2[3x - 2(x - y)]$ c) $12x - 5[3y - 2(y - x) + 12x]$

- 2. **Evaluate:**
 - a) $(3x^a)^{2a}$ when a = 2 and x = 3. Write as a power of 3.

b)
$$(3x^2)^a$$
 when $a = -2$ and $x = 2$ c) $(5x^{-3})^{-a}$ when $x = 2$ and $a = -2$

- Factor completely: 3.
 - b) $2x^2 3x 2$ c) $3x^5 - 48x$ a) $16x^4 - 1$ d) $125x^6 - 27y^9$ e) $16x^3 + 2y^{12}$
- 4. Reduce to lowest terms:

a)
$$\frac{16-a^2}{a^2-8a+16}$$
 b) $\frac{7x^2-14x}{14-5x-x^2}$ c) $\frac{14x^2y^5+7xy^3}{7xy}$

5. Simplify:

a)
$$\frac{\frac{1}{x} - \frac{1}{y}}{\frac{1}{x} + \frac{1}{y}}$$
 b) $\frac{x + \frac{1}{x}}{1 - \frac{1}{x}}$ c) $\frac{\frac{x}{yz}}{\frac{x}{y} + \frac{y}{z}}$

Rationalize the denominator and simplify: 6.

a)
$$\frac{1}{2}\sqrt{\frac{3}{8x}}$$

b) $\frac{2}{3}\sqrt{\frac{1}{2}}$
c) $5\sqrt{\frac{3}{5}}$
d) $\frac{5}{\sqrt{5}-2}$
e) $\frac{3x+2}{\sqrt{2}-2}$

7. a) Evaluate
$$(2x - \sqrt{y})^2$$
 when $x = 2$ and $y = 3$ b) Simplify: $(5 + \sqrt{13})(5 - \sqrt{13})$

- For c) and d) simplify and put your answers in a + bi form. c) $(3-4i)^2$ d) $\frac{7}{5+2i}$
- a) $a = \frac{b + x}{abx}$ b) $c = \frac{1}{2} [f 2ax]$ Solve for x: 8.

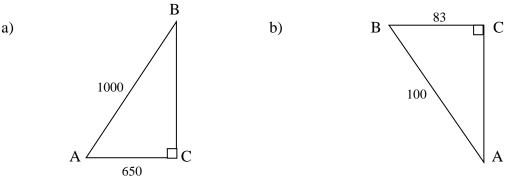
- 9. Given: (1) f(x) = 3x²/2 + 4 find: a) f(0) b) f(-2) c) f(3)
 (2) f(x) = (2x + 1)² 5 find: a) f(-1) b) f(0)
 10. Find the slope of the line passing through the points (-8, 3) and (-4, -6).
 11. Find the slope of the line with equation 3x + 2y 9 = 0
 - 12. Find the y intercept, as an ordered pair, of the line whose equation is 12x + 5y = 60.
 - 13. Find the slope of a line parallel to the line with equation 3x y = 12.
 - 14. Find the slope of a line perpendicular to the line with equation 4x 2y = 13.
 - 15. Find the slope of a line having an angle of inclination of 42°. Round to four decimal places.
 - 16. Find the angle of inclination, to the nearest degree, of a line whose slope is 0.8666.
 - 17. Find the equation of a line with a slope of $\frac{2}{3}$ and passing through the point (-9, 8). Give your answer in general and slope–intercept form.
 - 18. Find the equation of a line that is parallel to the line with equation 3x y 12 = 0 and whose x intercept is (7, 0). Give your answer in general and slope–intercept form.
 - 19. Find the equation of a line passing through (-3, 5) and (2, -7). Give your answer in general form.
 - 20. Find the equation of a line passing through (-4,2) and perpendicular to 10x 2y 6 = 0. Give your answer in general form.
 - 21. Find the equation of a line passing through (-3, 8) and parallel to the y-axis. (This does not have to be in general form.)
 - 22. Find the distance between the points (-5,4) and (6,-2). Give your answer in simplified radical form.
 - 23. Solve the following system of equations for y: 5x 3y = -25 and x + 2y = -3.
 - 24. Find the arc length intercepted by a central angle of 52° in a circle of radius 7.0 inches. Round to the nearest tenth.
 - 25. Simplify and express the answer with positive exponents:

a)
$$(-5x^2y^{-3})^2$$
 b) $(-6x^{-3}y^4)(5xy^{-2})$ c) $\frac{-42x^5y^{-6}}{7x^{-2}y}$

- 26. If $\log_3 x = 5$, find x.
- 27. If $\log_5 125 = y$, find y.
- 28. If $\log_b 125 = \frac{3}{2}$, find b.

29. If
$$\log_b 2 = \frac{1}{5}$$
, find b.

30. Rewrite $3 \log x - \log 5$ as a single positive logarithm whose coefficient is one.


For 31–33, either state the restrictions or check. All answers need to be in simplest form.

- 31. Solve for x: $3 \log x 2 \log (2x) = 2 \log 5$
- 32. Solve for x, exactly: $3 \log (x^2 + 2) 6 = 0$
- 33. Solve for x: $\log (5x + 2) 1 = \log (2x 1)$
- 34. Given: $\log x^3 = .609$ find: a) $\log x^2$ b) $\log \sqrt{x}$ Give your answers to three decimal places.
- 35. Evaluate exactly: $\ln e^{1.4}$
- 36. The graph of $y = 7x^2 2x 5$ intersects the x axis at what point(s)?
- 37. Solve for w by completing the square: $w^2 6w 3 = 0$.
- 38. Solve for y: $y^2 3y + 1 = 0$. Use the quadratic formula and give your answer in simplified radical form.
- 39. Convert to radians: Round to three decimal places.
 - a) 340° b) 150° c) 320° d) 270°
- 40. Convert to degrees:

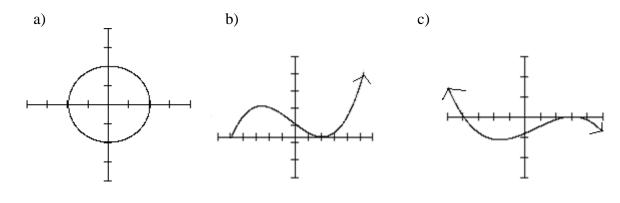
a)
$$\frac{4\pi}{9}$$
 rad b) $\frac{8\pi}{9}$ rad c) 5π radians d) 1.27 radians

- 41. Find the acute angle, to the nearest degree, whose secant is 4.5369
- 42. Find the acute angle, to the nearest degree, whose cos is 0.9812
- 43. Find the value of: a) $\sin 275.2^{\circ}$ b) $\cos 200.5^{\circ}$ c) $\sec 118.4^{\circ}$ d) $\csc 315.5^{\circ}$
- 44. Write $\sin 40^{\circ}$ as an equivalent co-function.
- 45. Find cot 50°. Round to four decimal places.

- 46. For a) d) round to the nearest degree.
 - a) Find the first quadrant angle whose csc is 1.0349
 - b) Find the second quadrant angle whose tan is -2.1445
 - c) Find the third quadrant angle whose sin is -0.6428
 - d) Find the fourth quadrant angle whose cos is .5
- 47. In right \triangle ABC, find angle A, to the nearest tenth of a degree.

- 48. If $\sin x = 0.4848$, find $\csc x$. Round to four decimal places.
- 49. If $\tan x = 0.6008$, find $\cot x$. Round to four decimal places.
- 50. Given oblique triangle ABC with c = 21, a = 14 and $C = 104.5^{\circ}$. Find angle A, rounded to the nearest tenth of a degree.
- 51. Given oblique triangle ABC, with side a = 12.5, side b = 9.2 and $C = 50^{\circ}$. Find side c, rounded to the nearest tenth.
- 52. Given oblique triangle ABC with a = 20, $C = 110^{\circ}$ and $A = 42^{\circ}$. Find side c, rounded to the nearest whole number.
- 53. If $\sin \theta = -\frac{3}{5}$, and θ is in quadrant IV, find $\cot \theta$ as a simple fraction.
- 54. For the parabola, $y = -x^2 + 4x 3$:
 - a) find the equation of axis of symmetry
 - b) find the coordinates of turning point (vertex)
 - c) find the x-intercept(s) (zeroes) as an ordered pair(s)
 - d) find the y intercept as an ordered pair
 - e) sketch the graph
- 55. Calculate the discriminant and determine the nature of the roots of the equation $7x = -3x^2 + 6$

56. Given the equation of a line 5x - 4y - 20 = 0:


- a) find the slope
- b) find the x intercept as an ordered pair
- c) find the y intercept as an ordered pair
- d) sketch the line
- 57. Simplify:
 - a) $\sqrt{4a} + \sqrt{16a} \sqrt{25a}$ b) $\sqrt{27} - 3\sqrt{12} + 5\sqrt{48}$ c) $(\sqrt{3} + 2)(\sqrt{5} - 4)$ d) $\sqrt[3]{32x^2y^4}$
- 58. Solve for x and check:

a)
$$2\sqrt{x-5} = 20$$
 b) $\sqrt{3x+1} - 5 = 3$

59. Find the domain of the following:

a)
$$y = x^2 + 2$$

b) $y = \sqrt{3x - 4}$
c) $y = \frac{x}{x^2 + x - 6}$

60. Find the domain and range of the following. Each mark represents one unit.

61. If $\ln(ex) = 4$, find: a) $\ln x$ b) $\ln x^3$

c) $\ln \sqrt[3]{x}$

- 62. Solve for x:
 - a) $\log_{x} 2 = -\frac{1}{3}$ b) $25^{2-x} = \left(\frac{1}{5}\right)^{x}$ c) $\log_{27} x = -\frac{4}{3}$ d) $\log_{x} \left(\frac{1}{9}\right) = -\frac{2}{3}$ e) $8^{x} = 15$ f) $27 = 9^{x-5}$
 - g) $\log(x + 5) + \log 2 = 2 \log(x + 5)$ h) $\log(x + 5) + \log 2 = 2$

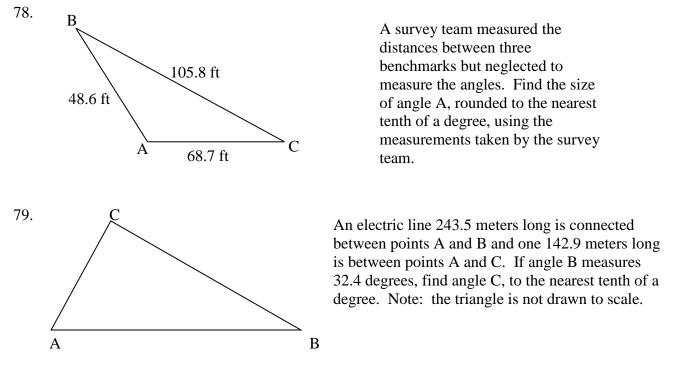
63. Simplify:

a)
$$\frac{3}{x} - \frac{5}{x+2} + \frac{x}{2}$$
 b) $\frac{x^2 + 5x + 6}{6x - 30} \cdot \frac{3x - 6}{x+3} \div \frac{x^2 - 4}{5x - x^2}$ c) $\frac{6}{2p - 4} - \frac{4}{p - 2} + \frac{1}{p^2 - 4}$

64. Factor completely:

a)
$$x^2 - 13xy + 36y^2$$
 b) $a^8 - b^8$ c) $42x^2 - 24x - 18$ d) $ab - ay - bx + xy$

65. Solve these literal equations for x: a)
$$p(x-b) = qx + d$$
 b) $\frac{bx-c}{ax-c} = 5$


66. a) If
$$f(x) = -x^2 + 5x - 3$$
, find $f(-2)$ b) If $g(x) = x^3 + 1$ and $h(x) = 2x + 5$, find $\frac{g(2) + 3h(1)}{h(-4)}$

67. If $f(x) = x^2 + 5$ and g(x) = 3x - 7, find, in simplest form: a) f(g(x)) b) g(f(x))

- 68. Divide using long division and write any remainder as a fraction: $(x^3 2x 25) \div (x 3)$
- 69. Solve for x: $\frac{2}{x-3} + \frac{x}{x^2-9} = \frac{4}{x+3}$. Either state the restrictions or show the check.
- 70. Solve the following system for x, y, and z.

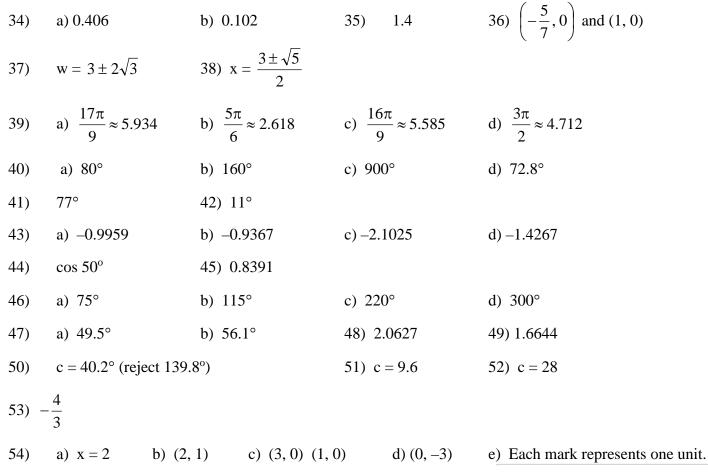
$$x + 2y + z = 3$$

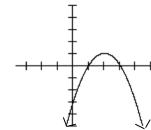
 $2x - y + 2z = 6$
 $3x + y - z = 5$

- 71. A lamp pole casts a shadow 53.0 feet long when the angle of elevation of the sun is 48.1°. Find the height of the lamp pole, rounded to the nearest tenth.
- 72. One pipe can fill a certain tank in 6 hours working alone and another in 4 hours. If both pipes will be running at the same time, how long will it take the pipes to fill the tank, working together?
- 73. A train departs at noon travelling at a speed of 64 km/hr. A car leaves the same station half an hour later to overtake the train, travelling on a road parallel to the track. If the car's speed is 96 km/hr, at what distance from the station will it overtake the train?
- 74. A certain sum of money is split among three people. The first gets one-third of the money, the second gets one-fourth of what is left, and then the third gets the rest, which is \$360. How much money was there to start?
- 75. Solve the following system *graphically* for x and y: 6x 2y 2 = 0 and x + y 3 = 0
- 76. Sketch and state the amplitude and period: a) $y = 3 \cos x$ b) $y = -2 \sin x$
- 77. Find the inverse of: a) f(x) = 7 5x b) $y = 8x^3 + 3$

Use the following formulas for 80 and 81. Exponential Growth: $y = ae^{nt}$ and Exponential Decay: $y = ae^{-nt}$

- 80. How many years, rounded to the nearest tenth, will it take for an initial deposit of \$1500 to yield \$2500 if it is invested at an interest rate of 2.5% per year, compound continuously?
- 81. A population is decreasing at a rate of 3.6% per year from an initial population of 9000. How many years, rounded to the nearest tenth of a year, will it take the population to decrease to one-third of the initial amount?


For questions 82 and 83, tell if the function has a maximum or minimum value, how you can tell from the equation, and the point (x, y) at which this occurs.

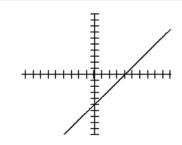

82.
$$y = x^2 + 8x + 10$$

83. $y = -4x^2 - 16x + 23$

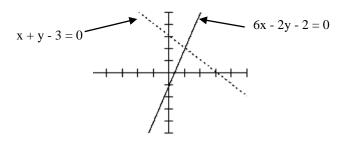
- 84. A ball is tossed upward with an initial velocity of 64 ft/s from a height of 4 feet. The height of the ball, h, after t seconds can be modeled by the quadratic function $h = -16t^2 + 64t + 4$.
 - a) At what time is the maximum height reached? What is the maximum height?
 - b) How long does the ball remain in the air? Round to the nearest hundredth of a second.
 - c) In how many seconds, rounded to the nearest tenth, will the ball be at a height of 50 feet? Why are there two possible solutions?

Answers to Final Exam Review

1) a)
$$-1$$
 b) $-2x$ c) $-58x - 5y$
2) a) 3^{12} b) $\frac{1}{144}$ c) $\frac{25}{64}$
3) a) $(2x-1)(2x+1)(4x^2+1)$ b) $(2x+1)(x-2)$ c) $3x(x-2)(x+2)(x^2+4)$
d) $(5x^2-3y^3)(25x^4+15x^2y^3+9y^6)$ e) $2(2x+y^4)(4x^2-2xy^4+y^8)$
4) a) $-\frac{a+4}{a-4}$ b) $-\frac{7x}{x+7}$ c) $2xy^4+y^2$
5) a) $\frac{y-x}{x+y}$ b) $\frac{x^3+1}{x-1}$ c) $\frac{x}{xz+y^2}$
6) a) $\frac{\sqrt{6x}}{8x}$ b) $\frac{\sqrt{2}}{3}$ c) $\sqrt{15}$ d) $\frac{5\sqrt{5}+15}{-4}$ e) $\frac{6x+4+3x\sqrt{2}+2\sqrt{2}}{-2}$
7) a) $19-8\sqrt{3}$ b) 12 c) $-7-24i$ d) $\frac{35}{29}-\frac{14}{29}i$
8) a) $x=\frac{b}{a^2b-1}$ b) $x=\frac{f-2c}{2a}$
9) (1) a) 4 b) 10 c) $\frac{35}{2}$
(2) a) -4 b) -4
10) $m=-\frac{9}{4}$ 11) $m=-\frac{3}{2}$ 12) (0, 12) 13) $m=3$
14) $m=-\frac{1}{2}$ 15) 0.9004 16) 41° 17) $2x-3y+42=0; y=\frac{2}{3}x+14$
18) $3x-y-21=0; y=3x-21$ 19) $12x+5y+11=0$ 20) $x+5y-6=0$
21) $x=-3$ 22) $\sqrt{157}$ 23) $y=\frac{10}{13}$ 24) 6.4 in.
25) a) $\frac{25x^4}{y^6}$ b) $\frac{-30y^2}{x^2}$ c) $\frac{-6x^7}{y^7}$
26) $x=243$ 27) $y=3$ 28) $b=25$ 29) $b=32$
30) $\log\left(\frac{x^3}{5}\right)$ 31) $x=100$ 32) $x=t7\sqrt{2}$ 33) $x=\frac{4}{5}$

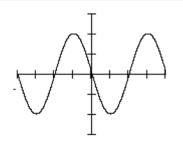


55) $b^2 - 4ac = 121$; roots are real, rational and unequal


56) a) $m = \frac{5}{4}$ b) (4, 0) c) (0, -5)

d) Each mark represents one unit.


57)	a) \sqrt{a}	b) $17\sqrt{3}$	c) $\sqrt{15} - 4\sqrt{15}$	$\sqrt{3} + 2\sqrt{5} - 8$	d) $2y\sqrt[3]{4x^2y}$
58)	a) x = 105	b) x = 21			
59)	a) all reals	b) $x \ge \frac{4}{3}$	c) all reals e	except 2 and -3	or $x \neq 2$ and $x \neq -3$
60)	a) Domain: $-2 \le x \le$ Range: $-2 \le y \le 2$			c) Domain: a Range: al	
61)	a) 3 b) 9	c) 1			
62)	a) $x = \frac{1}{8}$		c) $x = \frac{1}{81}$	d) x =	= 27
	e) $x = 1.302$	f) $x = \frac{13}{2}$	g) x = -3	h) x =	= 45
63)	a) $\frac{x^3 + 2x^2 - 4x + 2x(x+2)}{2x(x+2)}$	<u>12</u> b)	$-\frac{x}{2}$	c) $\frac{-p-p}{(p+2)(p+2)(p+2)}$	<u>1</u> - 2)
64)	a) $(x - 9y)(x - 4y)$	b)	$(a - b)(a + b)(a^2)$	$(+ b^2)(a^4 + b^4)$	
	c) $6(7x+3)(x-1)$	d) (b – y)(a – x)		
65)	a) $x = \frac{pb+d}{p-q}$	b)	$x = \frac{4c}{5a - b}$		
66)	a) -17 b) -10)			
67)	a) $9x^2 - 42x + 54$	b) $3x^2 + 8$			
68)	$x^2 + 3x + 7 - \frac{4}{x - 3}$				
69)	x = 18	70) (2, 0, 1	1)	71) 5	9.1 feet
72)	$\frac{12}{5}$ or 2.4 hours	73) 96 km		74)	\$720


75) The two lines intersect at the point (1, 2) Each mark represents one unit.

- 76) The curves are graphed from -2π to 2π (-360° to 360°) Each mark on the y axis represents one unit.
 - a) $y = 3 \cos x$ amplitude is 3; period is 2π or 360°

b) $y = -2 \sin x$ amplitude is 2; period is 2π or 360°

77) a)
$$f^{-1}(x) = \frac{7-x}{5}$$
 b) $f^{-1}(x) = \frac{\sqrt[3]{x-3}}{2}$

- 78) 128.0 degrees
- 79) 65.9 or 114.1 degrees
- 80) 20.4 years
- 81) 30.5 years
- 82) min; the leading coefficient is positive; (-4, -6)
- 83) max; the leading coefficient is negative; (-2, 39)
- a) 2 seconds; 68 feet
 b) 4.06 seconds
 c) 3.1 and 0.9 seconds; reaches 50 on the way up and on the way down